#247 - CEST fMRI at ultra-high magnetic field Plasma screen n°11

CEST fMRI at ultra-high magnetic field

Tangi Roussel¹, Lucio Frydman², Denis Le Bihan¹ and Luisa Ciobanu¹

[1] NeuroSpin, Commisariat à l'Energie Atomique et aux Energies Alternatives, Gif-sur-Yvette, France
 [2] Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel

DE LA RECHERCHE À L'INDUSTRIE

Summary

- Purpose
- CEST-fMRI method design
- CEST-fMRI methods
- CEST-weighted fMRI results
- Towards quantitative CEST-fMRI
- Discussion

Ceaneuro/Sp/3/n

- BOLD indirectly measures neurovascular coupling
 - naturally poor in spatial and temporal resolutions
- Some emerging methods to study brain activation:
 - spectroscopy (fMRS) suggests metabolic changes¹
 - diffusion fMRI suggests **structural modifications**²
- **Chemical Exchange Saturation Transfer** (CEST) is sensitive to such metabolic and morphological changes

Mangia S et al. J Cereb Blood Flow Metab 2009;29:441-463
 Le Bihan D. Proc Natl Acad Sci U S A. 2006;103:8263-8268

22 N/eu/ro/S

CEST-fMRI method design → What is CEST-MRI?

- Indirect detection of low-concentrated metabolites/proteins/macromolecules by:
 - Irradiating over small chemical shift ranges
 - Measuring the water signal changes
- Endogenous CEST contrast depends on:
 - Molecule abundance

Ceaneurospish

- Exchange rates (which can depend on tissue micro-structure and -environment)
- T1 (which depends on tissue time relaxation properties and B0)
- Applied to brain tumor and stroke imaging

CEST-fMRI method design → What is fMRI at 17.2T?

Ceaneurospisn

- Blood-Oxygen-Level Dependent imaging
- Sprague Dawley rats anesthetized with medetomidine (102µg/kg/h)
- Left/right fore-paw electrical stimulation (10Hz/2mA)
- **Block-design paradigm** of 10 blocks (30s rest, 30s activation)
- **GE-EPI** (2x2cm FOV, 85x85 matrix, 1.2mm-thick slice, TE/TR=9/2500ms)
- **17.2T** Bruker Biospin, 30-mm diameter surface coil

CEST-fMRI method design → Optimization

- General idea: replace each EPI acquisition by a CEST-EPI scan
- Problems:
 - It is CEST! we need long TRs to perform efficient RF saturation
 - It is fMRI! we need <u>short</u> TRs to collect time-domain data and increase sensitivity
 - BOLD effect! How to cancel it out?
 - Magnetization Transfer (MT) effect!¹
 How to cancel it out?

1. Kim T et al. Magn Reson Med. 2008;60:1518-1523

Ceaneurospisn

CEST-fMRI method design → Optimization

- Question: How many and which chemical shifts should we irradiate in order to observe a CESTfMRI contrast free of BOLD and MT effects?
- Monte Carlo study using simulations of CEST-fMRI signals. Activation consisted in:
 - BOLD effect
 - +1 to +3% broadband intensity change
 - T2* changes reflected on the water linewidth
 - \pm 1% wide-band symmetric MT effect
 - $\pm 0.5\%$ local CEST effect at + δ ppm

Ceaneuro/Sp/3/n

 CEST signals were "acquired" for saturation frequencies +δ, -δ and +100 ppm and mathematically combined

CEST-fMRI experimental design → Optimization

Two strategies were selected from the Monte Carlo results:

- CEST-weighted fMRI strategy
 - Qualitative CEST measurement
 - 2 saturation freqs: **+δ and -δ ppm**
 - Processing: ratio of images S(+δ)/S(-δ)

• Quantitative CEST-fMRI strategy

Ceaneurospisn

- Based on conventional CEST-MRI
- 3 saturation freqs: $+\delta$, $-\delta$, 100 ppm
- Processing: MTR_{asym} map calculation

CEST-fMRI methods

Those two strategies were implemented:

1. CEST-weighted fMRI

(+) 6 images per block, acceptable time resolution and sensitivity

(+) Minimum scan time of 2mins

(-) Qualitative CEST measurement

2. Quantitative CEST-fMRI

- (+) Quantitative CEST measurement
- (-) Minimum scan time of 6mins

Cean/eu/ro/Sp/ja/n

(-) 4 images per block, low time resolution and sensitivity

Results: CEST-weighted fMR images

a. BOLD GE-EPI images

Ceaneuro/Sp/3/n

b. CEST-weighted fMR images acquired with δ =1.2ppm (glucose exchange chemical shift). Image ratios S(- δ)/S(+ δ) were processed in SPM: intensity drift correction, image registration, SPM fMRI processing and p thresholding (0.001)

- The S(-δ)/S(+δ) fMR images show a spatially localized decrease (blue), matching the BOLD activation area
- No significant changes were successfully imaged for δ=2ppm or δ=3.5ppm (APT¹)

1. APT=Amide Proton Transfer, commonly-used CEST-MRI method

Results: CEST-weighted fMRI time courses

a. BOLD time evolution signal

Ceaneuro/Sp/jan

- **b. CEST-weighted** time evolution S(- δ)/S(+ δ) with δ =1.2ppm (glucose)
- **c. CEST-weighted** time evolution S(- δ)/S(+ δ) with δ =3.5ppm (APT)

Signals were extracted from the BOLD activation ROI

- δ=1.2ppm: S(-δ)/S(+δ) decreases in average of -0.6% during stimulation (n=5 animals, BOLD<0.5% rejected)
- δ=3.5ppm: No significant changes were observed (n=4 animals, BOLD<0.5% rejected)

Results: CEST-weighted atlas brain analysis

- **a. BOLD** segmented brain atlas (p<0.05)
- **b. CEST-weighted** segmented brain image S(-δ)/S(+δ) with **δ=1.2ppm** (p<0.05)
- n=5 animals, BOLD<0.5% rejected, 1.08mm Bregma rat brain atlas

Ceaneuro/Sp/s/n

 An increase in BOLD and a decrease of the ratio S(-δ)/S(+δ) is observable in the primary somatosensory cortex (S1F)

Towards quantitative CEST-fMRI

• Method

In order to quantify our observations at δ =1.2ppm using the CEST-weighted method, we performed:

- Careful *in vitro* calibrations on glucose samples with 0 to 50 mmol/L concentrations (pH=7.2)
- In vivo measurements using the quantitative CEST-fMRI method based on MTR_{asym}
- Results

Ceaneurospisn

- An average MTR_{asym} decrease of -0.052% was observed during stimulation
- According to the *in vitro* calibration, this would correspond to a glucose concentration decrease of -65 µmol/kg during brain activation

Discussion

- Previous studies using fMRS,^{1,2,3} PET⁴ and PET-MRI⁵ showed an increased consumption during brain activation
 - causing a temporary **drop of the glucose concentration**⁶

22 N/eu/r/o/S/p/s/n

- Further investigations are needed to estimate the cerebral metabolic rate of glucose (CMR_{glc}) using CEST-fMRI data
- A drop in GlucoCEST signal could also originate from a decrease of the **glucose exchange rates** (changes in the micro-environment and/or micro-structure of neurons?)
- 1. Chen W et al. Proc Natl Acad Sci U S A 1993;90:9896-99004. Fox PT et al. Science 1988;241:462-4642. Hyder F et al. J Cereb Blood Flow Metab 1997;17:1040-10475. Wehrl HF et al. Nat Med 2013;19:1184-11893. Shestov AA et al. Am J Physiol Endocrinol Metab 2011;301:E1040-10496. Giove F et al. Magn Reson Imaging 2003;21:1283-1293

Conclusions

- Some limitations of CEST-fMRI methods:
 - Sensitivity!
 - BOLD and MT effects contamination
 - Sensitive to dynamic water resonance frequency shift (susceptibility)
- Promising results!

CCONCONTRACTOR

- Not limited to glucose: lactate, glutamate, creatine and various proteins involved in the metabolism and the micro-structure of neurones have exchanging properties
- Potentially a new contrast mechanism for fMRI
- Imaging of real-time metabolic changes upon neuronal activation

Thanks for your attention

- This research was supported by:
 - CEA Enhanced Eurotalents
 - The Louis-Jeantet Foundation
 - The French National Research Agency (ANR-13-NEUC-0002-01)
- Many thanks to:
 - Boucif Djemai
 - Tom Tsurugizawa

Cea N/eurosp/jn