

State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
auran Daurada			

Definition

A Cramér-Rao Lower Bound (CRB) is the lower bound on the variance of estimators of a deterministic parameter. In other words, CRB represents the lowest estimation error of a parameter in the case of an unbiased estimator.

Bounds Calculation

In theory, CRB are calculated from the "true" parameters values of the signal c_m , T_{2m} , $\triangle \alpha_m$, $\triangle \omega_m$ and ϕ_0 . NEMESIS determine CRB from the estimated values of parameters by :

- Building the Fisher Information Matrix (FIM) knowing the second derivative matrix of the model function $\hat{x}(n_{t_2}, n_{t_1})$
- Inverting the (FIM)
- Extracting the diagonal values

Error bars

In order to calculate the estimation errors, CRB values should be normalised knowing the noise level of the signal.

0	0

Quantitative conventional 2D MRS

Ultrafast 2D MRS 00000000000 Conclusions & Perspective

Development of new acquisition strategies and quantification methods for *in vivo* 2D Magnetic Resonance Spectroscopy

PhD candidate : Tangi ROUSSEL

11th of July 2012

PhD Committee :

Examiners :	Olivier LAFON	Professeur des Universités, Université de Lille I
	Lotfi SENHADJI	Professeur des Universités, Université de Rennes I
	Serge AKOKA	Professeur des Universités, Université de Nantes
	Thomas LANGE	PhD, University Medical Center Freiburg, Allemagne
Supervisors ·	Sonhie CAVASSI	A Professeur des Universités Université de Lyon L

Hélène RATINEY

Professeur des Universités, Université de Lyon I Chargée de recherches, Université de Lyon I

	State of the art
00000	

Introduction

- Magnetic Resonance Spectroscopy
- Understanding a MRS signal
- ID MRS · Limitations
- In vivo 2D MRS
- State of the art

Goals

Quantitative conventional 2D MRS

- Aims
- 2D J-PRESS WISH sequence
- NEMESIS quantification procedure
- Irregular sampling
- Conclusions

Ultrafast 2D MRS

- Aims
- Introduction
- ufJPRESS sequence
- Optimising the sequence
- Data reconstruction & Post-processing procedures

Conclusions & Perspectives

Introduction State of the art •0000 Quantitative conventional 2D MI

Ultrafast 2D MRS 00000000000 Conclusions & Perspectives

Magnetic Resonance Spectroscopy

Fig. 1: 1.5 T Fast Spin Echo T_2 -weighted image from the brain of a patient suffering with glioma

Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a medical imaging technique used in radiology to visualize internal structures of the body. MRI makes use of the property of NMR to image hydrogen nuclei (protons) inside the body tissue.

Introduction State of the ar •0000

f the art G

Quantitative conventional 2D MR 00000000000000 Ultrafast 2D MRS 00000000000 Conclusions & Perspectives

Magnetic Resonance Spectroscopy

Fig. 1: 1.5 T Fast Spin Echo T_2 -weighted image from the brain of a patient suffering with glioma

Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a medical imaging technique used in radiology to visualize internal structures of the body. MRI makes use of the property of NMR to image hydrogen nuclei (protons) inside the body tissue.

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy (MRS) allows non-invasive and *in vivo* exploration of the molecular composition of tissue. It identifies certain molecular constituents - metabolites - involved in physiological or pathological processes.

Fig. 2: Principle of quantitative MRS of human brain using a PRESS sequence

ntroduction	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
0000		000000000000	0000000000	
Jnderstanding a M	RS signal			

Interpreting an in vivo NMR spectrum

- 12 detectable metabolites at 4.7 T for short echo time
- Linear combination of metabolic spectral signatures
- **Baseline** (macromolecular contamination)
- Noise

Fig. 3: In vivo MR spectrum acquired from a rat brain at 7 T (PRESS sequence, TE=20 ms, 10 min scan time)

ntroduction	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
0000		0000000000000	00000000000	
Jnderstanding a M	RS signal			

Interpreting an in vivo NMR spectrum

- 12 detectable metabolites at 4.7 T for short echo time
- Linear combination of metabolic spectral signatures
- **Baseline** (macromolecular contamination)
- Noise

Metabolic signature

Each metabolite has a spectral signature characterised by :

- Chemical shifts (ppm)
- J-coupling constants (Hz)
- Concentration (mmol/kg)

Fig. 3: In vivo MR spectrum acquired from a rat brain at 7 T (PRESS sequence, TE=20 ms, 10 min scan time)

7/41

Limitations

1D MRS used with low B_0 fields suffers with :

- Spectral overlapping between metabolites (Glu/Gln)
- Spectral overlapping between metabolites and macromolecules (baseline)
- Low concentrated metabolites (GABA)

Fig. 7: Understanding conventional 2D J-resolved MRS

A conventional localised 2D J-resolved MRS experiment consists in :

- performing numerous acquisitions of FIDs for various Echo Times
- Fourier transforming each FID to obtain F₂ dimension
- Fourier transforming the data set following the t₁ dimension

Fig. 8: Understanding conventional 2D J-resolved MRS

Pros/Cons

- \oplus Information following F_1 dimension : J-coupling constant
- \ominus Acquisition duration depends on the number of increments in Echo Time (n_{t1}) resulting in expensive scan time (up to 1h30)

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	00000000000	

In vivo 2D MRS since 1995

- More and more studies on human brain¹
- Few studies on small animal consisting mainly in metabolite identification²

¹Thomas M A et al, JMRI, 6 :453-459, 1996
 ²Meric P et al, MAGMA, 17 :317-338, 2004
 ³Schulte R F et al, NMR Biomed, 19 :255-263, 2006
 ⁴Provencher S W et al, MRM, 30 :672-679,1993
 ⁵Golub G H et al, SIAM JNA, 10 :413-432, 1973
 ⁶Hiba B et al, MRM, 52 :658-662, 2004
 ⁷Frydman L et al, PNAS USA, 99 :15858-15862, 2002

11/41

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	00000000000	

In vivo 2D MRS since 1995

- More and more studies on human brain¹
- Few studies on small animal consisting mainly in metabolite identification²

Fig. 9: ProFit algorithm

Few studies on quantitative 2D MRS

- One quantification algorithm dedicated to human brain 2D MRS at 3 T : ProFit^3 based on 1D quantification methods LCModel^4 & VARPRO^5
- No quantification algorithm for small animal brain 2D MRS

¹Thomas M A et al, JMRI, 6 :453-459, 1996
 ²Meric P et al, MAGMA, 17 :317-338, 2004
 ³Schulte R F et al, NMR Biomed, 19 :255-263, 2006
 ⁴Provencher S W et al, MRM, 30 :672-679,1993
 ⁵Golub G H et al, SIAM JNA, 10 :413-432, 1973
 ⁶Hiba B et al, MRM, 52 :658-662, 2004
 ⁷Frydman L et al, PNAS USA, 99 :15858-15862, 2002

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	00000000000	

In vivo 2D MRS since 1995

- More and more studies on human brain¹
- Few studies on small animal consisting mainly in metabolite identification²

¹Thomas M A et al, JMRI, 6 :453-459, 1996
 ²Meric P et al, MAGMA, 17 :317-338, 2004
 ³Schulte R F et al, NMR Biomed, 19 :255-263, 2006
 ⁴Provencher S W et al, MRM, 30 :672-679,1993
 ⁵Golub G H et al, SIAM JNA, 10 :413-432, 1973
 ⁶Hiba B et al, MRM, 52 :658-662, 2004
 ⁷Frydman L et al, PNAS USA, 99 :15858-15862, 2002

	State of the art	Goals	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000			0000000000000	00000000000	

This PhD thesis work on 2D MRS can be presented under two main headings :

Quantitative 2D MRS for small animal brain

- Design a 2D MRS sequence on a 4.7 and a 7 T *Bruker Biospec* imaging systems
- Perform in vivo 2D MRS localised acquisitions on rat brain
- Develop a dedicated quantification algorithm to estimate metabolite concentrations from the acquired data

	State of the art	Goals	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000			0000000000000	00000000000	

This PhD thesis work on 2D MRS can be presented under two main headings :

Quantitative 2D MRS for small animal brain

- Design a 2D MRS sequence on a 4.7 and a 7 T Bruker Biospec imaging systems
- Perform in vivo 2D MRS localised acquisitions on rat brain
- Develop a dedicated quantification algorithm to estimate metabolite concentrations from the acquired data

Acquisition time reduction of 2D MRS experiment

- Design an ultrafast localised 2D MRS sequence on a 4.7 and a 7 T Bruker Biospec imaging systems
- Optimise and validating the sequence on in vitro phantoms

Introduction State of the art Goals Quantitative

Quantitative conventional 2D MRS

Ultrafast 2D MRS 00000000000 Conclusions & Perspectives

Quantitative conventional 2D MRS

Introduction 00000	State of the art	Goals	Quantitative conventional 2D MRS	OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	Conclusions & Perspectives
Aims					
	i Desi	gn a 2D	MRS sequence on small in	naging systems	
TE_2	→ •	2D MRS	S J-resolved spectroscopy se	quence	
π	•	Irregular	r data sampling following t_1	dimension	
	•	Inversio	n-recovery excitation to acq	uire 2D baseline	
			PARTY AND A STATE OF	SA NYAHARAVY NY SAR	

Introduction 00000	State of the art	Goals	Quantitative conventional 2D MRS	Ultrafast 2D MRS 00000000000	Conclusions & Perspectives
Aims					
	Des	ign a 2D	MRS sequence on small in	maging systems	
TE_2	•	2D MRS	5 J-resolved spectroscopy se	quence	
π	•	Irregula	data sampling following t_1	dimension	
		Inversio	n-recovery excitation to acq	uire 2D baseline	

Develop a dedicated quantification algorithm

- Complex time domain quantification & strong prior-knowledge
- Irregular data sampling handling

00000	State of the art			000000000000000000000000000000000000000	Conclusions & Perspectives
Aims	Des	gn a 2D MRS sequ	ence on small	imaging systems	
TE_2	•	2D MRS J-resolved	spectroscopy	sequence	
$\sim \pi$		Irregular data samp	oling following a	t_1 dimension	
		inversion-recovery (Lyune 2D Dasenne	

Develop a dedicated quantification algorithm

- Complex time domain quantification & strong prior-knowledge
- Irregular data sampling handling

Develop an algorithm to optimise t_1 sampling

- Based on Cramér-Rao theory
- Calculation of optimised sampling following t_1 dimension in order to increase quantification accuracy

00000	State of the art	Goals		000000000000000000000000000000000000000	conclusions & reispectives
Aims					
	Des	ign a 2D	MRS sequence on small in	maging systems	
TE_2	•	2D MRS	5 J-resolved spectroscopy se	quence	
π	•	Irregular	data sampling following t_1	dimension	
	•	Inversion	n-recovery excitation to acq	uire 2D baseline	
			A REAL PROPERTY OF A REAL PROPER		

Develop a dedicated quantification algorithm

- Complex time domain quantification & strong prior-knowledge
- Irregular data sampling handling

Develop an algorithm to optimise t_1 sampling

- Based on Cramér-Rao theory
- Calculation of optimised sampling following t_1 dimension in order to increase quantification accuracy

Validate the methods on small animal

- In vivo acquisition performed on a 4.7 and a 7 T Bruker Biospec imaging systems
- Localised MRS experiments on mouse and rat brain

14/41

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		000000000000000000000000000000000000000	00000000000	
2D J-PRESS WI	SH sequence			
Designing the	sequence			

Fig. 10: Simulated 2D J-resolved MR spectrum of ethanol

2D J-resolved MRS

- \oplus Short acquisition time (in comparison with COSY MRS) due to the small bandwidth required following F_1 dimension

 $^{^{\}rm 8}{\rm 2D}$ J-Resolved Point Resolved SpectroScopy with Weighted Irregular Sampling Handling

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		000000000000000000000000000000000000000		
2D J-PRESS WI	SH sequence			
Designing the	sequence			

Fig. 10: Simulated 2D J-resolved MR spectrum of ethanol

2D J-PRESS WISH⁸ sequence : Preparation period

- Water suppression scheme (VAPOR module) to reduce water signal
- Saturation bands (OVS module) to reduce outer volume signal artefacts
- Inversion pulse (InvPulse module) to perform inversion-recovery excitation

2D J-resolved MRS

- ⊕ Short acquisition time (in comparison with COSY MRS) due to the small bandwidth required following F₁ dimension
- ⊕ Easy to implement on an MRI since the pulse sequence is close to PRESS scheme

 $^{^{\}rm 8}{\rm 2D}$ J-Resolved Point Resolved SpectroScopy with Weighted Irregular Sampling Handling

Fig. 12: 2D J-PRESS WISH⁹ sequence

Excitation & Detection

- Strongly based on PRESS excitation scheme
- TE calculation mode can be chosen in order to profit from TE_1/TE_2

⁹2D J-Resolved Point Resolved SpectroScopy with Weighted Irregular Sampling Handling

Excitation & Detection

- Strongly based on PRESS excitation scheme
- TE calculation mode can be chosen in order to profit from TE_1/TE_2

Original functionalities

- Regular or irregular sampling following t_1 dimension
- NA weighting of the increments acquired following t_1 dimension

⁹2D J-Resolved Point Resolved SpectroScopy with Weighted Irregular Sampling Handling

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspe
00000		000000000000	00000000000	
2D J-PRESS WISH	sequence			

In vivo experiment with 2D J-PRESS WISH sequence

2D J-PRESS WISH experiment

- Performed on a horizontal 7T Bruker Biospec MRI
- A 5-month-old rat was anaesthetised by inhalation of isoflurane
- · Volume coil for emission and surface receive coil
- The signal was collected from a 64 μ L voxel
- 1st and 2nd order local shim adjustment
- *TE*=20 to 140 ms, *N*₁=24, *TR*=2.5 s, *NA*=96 (1h 36min acquisition time)

Fig. 13: Axial slice image of a rat brain (RARE, TE/TR=15/5166ms)

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspec
00000		000000000000	00000000000	
2D J-PRESS WISH	sequence			

In vivo experiment with 2D J-PRESS WISH sequence

2D J-PRESS WISH experiment

- Performed on a horizontal 7T Bruker Biospec MRI
- A 5-month-old rat was anaesthetised by inhalation of isoflurane
- · Volume coil for emission and surface receive coil
- The signal was collected from a 64 $\mu \rm L$ voxel
- 1st and 2nd order local shim adjustment
- *TE*=20 to 140 ms, *N*₁=24, *TR*=2.5 s, *NA*=96 (1h 36min acquisition time)

Fig. 13: Axial slice image of a rat brain (RARE, TE/TR=15/5166ms)

Fig. 14: In vivo MRS 2D J-resolved spectrum acquired in a rat brain with the 2D J-PRESS WISH sequence

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspective
		000000000000000000000000000000000000000		
NEMESIS quant	tification procedure			
Model functio)n			

NEMESIS¹⁰ properties

- 2D complex time-domain model function consisting in a linear combination of metabolite signals
- Strong prior-knowledge consisting of a set of 2D metabolite signals simulated with GAMMA¹¹
- Macromolecular contamination is handled by gaussian modelisation of *in vivo* acquisitions
- Levenberg-Marquardt optimisation algorithm

Fig. 15: Set of 19 2D metabolite signals

 $^{10}\mbox{Numeric}$ Estimation Method for 2D Spectroscopy Irregulary Sampled data

¹¹Smith S A et al, JMR, A106 :75-105, 1994

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		000000000000000000000000000000000000000		
NEMESIS quant	ification procedure			
Model functio	'n	F		

NEMESIS¹⁰ properties

- 2D complex time-domain model function consisting in a linear combination of metabolite signals
- Strong prior-knowledge consisting of a set of 2D metabolite signals simulated with GAMMA¹¹
- Macromolecular contamination is handled by gaussian modelisation of *in vivo* acquisitions
- Levenberg-Marquardt optimisation algorithm

Fig. 15: Set of 19 2D metabolite signals

$$\hat{x}(t_2, t_1) = \exp(i \cdot \phi_0) \sum_{m=1}^{M} c_m \cdot \hat{x}(t_2, t_1)^m \cdot \exp\left[\left(-\frac{t_1}{T_{2m}}\right) + \left(\bigtriangleup \alpha_m + i \cdot \bigtriangleup \omega_m\right) \cdot t_2\right]$$

- c_m : Amplitude/concentration of the metabolite signal $\hat{x}(t_2, t_1)^m$
- T_{2m} : Transverse relaxation time [s]
- $\Delta \alpha_m = \frac{1}{T_{2m}^*}$: Extra damping factor [Hz]
- $\triangle \omega_m$: Frequency shift [Hz]
- φ₀ : Global zero-order phase [rad]

 $^{10}\mbox{Numeric}$ Estimation Method for 2D Spectroscopy Irregulary Sampled data

¹¹Smith S A et al, JMR, A106 :75-105, 1994

	orace of the art	quantitative conventional 2D millo	conclusions de l'enspectives
		0000 0000 00000	
NEMESIS quantif	ication procedure		
Quantification	strategy		

$$C = \sum_{n_{t_2}=0}^{n_{t_2}=N_2} \sum_{n_{t_1}=0}^{n_{t_1}=N_1} \left[x(n_{t_2}, n_{t_1}) - \hat{x}(n_{t_2}, n_{t_1}) \right]^2$$

- $x(n_{t_2}, n_{t_1})$: data signal
- $\hat{x}(n_{t_2}, n_{t_1})$: model signal

¹²Asp, Ala, Cho, Cre, GABA, Glc, Gln, Glu, Gly, GPC, Gsh, Lac, m-Ins, NAA, NAAG, PCr, PCho, PE, Tau

Introduction 00000	State of the art		Quantitative conventiona	al 2D MRS	Ultrafast 2D MRS 00000000000	Conclusions & Perspectives	
NEMESIS qua	ntification procedure						
Quantificati	on strategy						
C =	$\sum_{n_{t_2}=0}^{t_2=N_2} \sum_{n_{t_1}=0}^{n_{t_1}=N_1} [x(n_{t_1})]$	$_{t_2}, n_{t_1}) -$	$\hat{x}(n_{t_2}, n_{t_1})]^2$	 x(n_{t2} x̂(n_{t2} 	(n_{t_1}) : data signa (n_{t_1}) : model signa	nal	
Ор	timisation						
•	19 metabolites	$^{12} + mac$	cromolecular conta	mination	= up to 40 para	meters !	
•	Possible optim	isation p	roblems such as l	ocal mini	ma	J	

¹²Asp, Ala, Cho, Cre, GABA, Glc, Gln, Glu, Gly, GPC, Gsh, Lac, m-Ins, NAA, NAAG, PCr, PCho, PE, Tau

00000 NEMESIS quant	State of the art	Goals	Quantitative convention	00	00000000000000000000000000000000000000	Conclusions & Perspective	S
Quantification	strategy						
$C = \sum_{n_{t_2}}^{n_{t_2}}$	$\sum_{2=0}^{N_2} \sum_{n_{t_1}=0}^{n_{t_1}=N_1} [x(n_{t_1})]$	$(t_2, n_{t_1}) -$	$\hat{x}(n_{t_2}, n_{t_1})]^2$	 x(n_{t2} x̂(n_{t2} 	$, n_{t_1})$: data signa $, n_{t_1})$: model signa	nal	
Opti	misation						
•	19 metabolites Possible optim	¹² + mac iisation p	romolecular con r oblems such as	tamination Iocal mini	= up to 40 parai ma	meters !	

Quantification strategy

- 4-stage quantification (total calculation time = 3 min)
- Gradual increase of the number of estimated parameters to reduce optimisation problems

¹²Asp, Ala, Cho, Cre, GABA, Glc, Gln, Glu, Gly, GPC, Gsh, Lac, m-Ins, NAA, NAAG, PCr, PCho, PE, Tau

	State of the art	Goals	Quantitative conventional 2D MRS		Ultrafast 2D MRS	Conclusions & Perspectives	
00000			000000000000000000000000000000000000000		00000000000		
NEMESIS quant	tification procedure						
Quantification	n strategy						
$C = \sum_{n_{t_2}=0}^{n_{t_2}=N_2} \sum_{n_{t_1}=0}^{n_{t_1}=N_1} [x(n_{t_2}, n_{t_1}) - \hat{x}(n_{t_2}, n_{t_1})]^2$			• $x(n_{t_2}, n_{t_1})$: data signal • $\hat{x}(n_{t_2}, n_{t_1})$: model signal				
	400	and		CIUNE AND		STATES AND A	
Opti	misation						
• 19 metabolites ¹² + macromolecular contamination = up to 40 parameters !							
2022	Describle entire						

Possible optimisation problems such as local minima

Quantification strategy

- 4-stage quantification (total calculation time = 3 min)
- Gradual increase of the number of estimated parameters to reduce optimisation problems

Multistart Optimisation

- For each quantification stage, multiple gaussian random starting values are initialised around the values evaluated at the last stage in order to reduce optimisation problems related to initial parameters value
- The estimated parameters are kept for a minimal fit residue

¹²Asp, Ala, Cho, Cre, GABA, Glc, Gln, Glu, Gly, GPC, Gsh, Lac, m-Ins, NAA, NAAG, PCr, PCho, PE, Tau

	State of the art		Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives	
			000000000000000000000000000000000000000			
NEMESIS quantification procedure						

Quantification strategy

1. Base line estimation

- Quantification of inversion-recovery 2D MRS data
- Linear combination of 20 gaussian components
- Integration in NEMESIS prior-knowledge

	State of the art		Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives		
			000000000000000000000000000000000000000				
NEMESIS quantification procedure							
O	aturation .						

1. Base line estimation

- Quantification of inversion-recovery 2D MRS data
- Linear combination of 20 gaussian components
- Integration in NEMESIS prior-knowledge

2. Global frequency shift estimation

- Maximum peak detection of singlets : Cho, Cre, NAA
- The parameter $riangle \omega_m$ is initialised for all metabolites

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		000000000000000000000000000000000000000		
NEMESIS quant	ification procedure			
O	aturation .			

1. Base line estimation

- Quantification of inversion-recovery 2D MRS data
- Linear combination of 20 gaussian components
- Integration in NEMESIS prior-knowledge

2. Global frequency shift estimation

- Maximum peak detection of singlets : Cho, Cre, NAA
- The parameter $riangle \omega_m$ is initialised for all metabolites

3. Singlets estimation

- cm parameter is estimated for Cho, Cre et NAA
- Global estimation of the parameters $\mathcal{T}_{2m},$ $\bigtriangleup \alpha_m,$ $\bigtriangleup \omega_m$ and ϕ_0

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		000000000000000000000000000000000000000		
NEMESIS quant	ification procedure			
O	aturation .			

Quantification strategy

1. Base line estimation

- Quantification of inversion-recovery 2D MRS data
- · Linear combination of 20 gaussian components
- Integration in NEMESIS prior-knowledge

2. Global frequency shift estimation

- Maximum peak detection of singlets : Cho, Cre, NAA
- The parameter $riangle \omega_m$ is initialised for all metabolites

3. Singlets estimation

- cm parameter is estimated for Cho, Cre et NAA
- Global estimation of the parameters $T_{2m},$ $\bigtriangleup \alpha_m,$ $\bigtriangleup \omega_m$ and ϕ_0

4. Global estimation

- Parameters c_m , T_{2m} , $riangle \alpha_m$ and $riangle \omega_m$ are estimated for each metabolite
- Global estimation of the phase parameter ϕ_0

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		0000000000000		
NEMESIS quant	ification procedure			
Monte Carlo	validation			

Quantification strategy vs. Single quantification : study on simulated data

- A 2D simulated 7T MRS signal was generated with typical in vivo parameter values and macromolecular contamination
- 100 repetitions of the quantification procedure were performed for the above simulated data added to Gaussian noise
- · Quantification was performed with and without the quantification strategy
- · Biases and standard deviations were computed for the amplitude estimates

Introduction	State of the art	Goals	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives				
			0000000000000						
NEMESIS quantifie	NEMESIS quantification procedure								
Monte Carlo va	lidation								

Fig. 17: Bias and standard deviations calculated of the amplitude estimates

Results

- · Global reduction of standard deviation when using the quantification strategy
- Slight reduction for Ala and Lac whose spectral signatures are strongly overlapped with macromolecular contamination

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		000000000000000000000000000000000000000		
Irregular sampling				
CRISO method				

CRISO¹³ algorithm

- Strongly relies on **Cramér-Rao Lower Bounds** (CRB) : lowest estimation error of a parameter in the case of an unbiased estimator
- Calculates optimised sampling following t_1 dimension for each metabolite in order to minimize CRB
- Calculates a rank for each t_1 increments according to the CRB reduction induced

23/41

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		000000000000000000000000000000000000000		
Irregular sampling				
CRISO method				

CRISO¹³ algorithm

- Strongly relies on **Cramér-Rao Lower Bounds** (CRB) : lowest estimation error of a parameter in the case of an unbiased estimator
- Calculates optimised sampling following t_1 dimension for each metabolite in order to minimize CRB
- Calculates a rank for each t_1 increments according to the CRB reduction induced

Fig. 18: Graphical representation of optimised sampling calculated with CRISO for 7 coupled metabolites

¹³Cramér-Rao guided Irregular Sampling Optimisation

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		000000000000000000000000000000000000000		
Irregular sampling				
Monte Carlo va	lidation			

Sampling optimisation on simulated data

- 200 repetitions of the quantification procedure
- 4 sampling strategies were tested : 3 optimised samplings (Ala, Asp & GABA) and a regular sampling

Introduction	State of the art	Goals	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
			000000000000000000000000000000000000000		
Irregular sampling					
Monte Carlo va	lidation				

Sampling optimisation on simulated data

- 200 repetitions of the quantification procedure
- 4 sampling strategies were tested : 3 optimised samplings (Ala, Asp & GABA) and a regular sampling

Fig. 19: Bias and standard deviations calculated of the amplitude estimates

Results

- Global reduction of standard deviation when using an optimised sampling
- Slight reduction of standard deviation for NAA which is not a strongly coupled

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		000000000000000000000000000000000000000		
Irregular sampling				

In vivo validation

2D J-PRESS WISH experiment

- Performed on a horizontal 7T Bruker Biospec MRI
- A swiss mouse model anesthetised by inhalation of isoflurane
- · Volume coil for emission and surface receive coil
- The signal was collected from a 90 $\mu \rm L$ voxel
- TR=3 s, NA=128, TE sampling was set up in order to cover the 4 previous tested strategies.

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		000000000000000000000000000000000000000		
Irregular sampling				

In vivo validation

2D J-PRESS WISH experiment

- Performed on a horizontal 7T Bruker Biospec MRI
- A swiss mouse model anesthetised by inhalation of isoflurane
- · Volume coil for emission and surface receive coil
- The signal was collected from a 90 $\mu \rm L$ voxel
- TR=3 s, NA=128, TE sampling was set up in order to cover the 4 previous tested strategies.

Fig. 20: A 7T in vivo 2D JPRESS spectrum (a) and its estimated spectrum (b)

Fig. 21: In vivo quantification results : metabolite concentration estimates with CRB error bars

Results

- Concentration estimates in agreement with literature were found using the Asp dedicated optimised sampling
- In agreement with previous results, quantification results for NAA are independent of the sampling following t₁ dimension

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	00000000000	
Conclusions				

A new localised 2D MRS sequence handling irregular sampling and inversion-recovery excitation was designed

 $^{14} \rm Roussel$ T et al, ESMRMB Antalya, 119, 2009 $^{15} \rm Roussel$ T et al, ISMRM-ESMRMB Stockholm, 904, 2010

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	00000000000	
Conclusions				

A new localised 2D MRS sequence handling irregular sampling and inversion-recovery excitation was designed

NEMESIS¹⁴

A novel complex time domain quantification procedure relying on strong prior-knowledge was developed

¹⁴Roussel T et al, ESMRMB Antalya, 119, 2009
¹⁵Roussel T et al, ISMRM-ESMRMB Stockholm, 904, 2010

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		00000000000000		
Conclusions				

A new localised 2D MRS sequence handling irregular sampling and inversion-recovery excitation was designed

NEMESIS¹⁴

A novel complex time domain quantification procedure relying on strong prior-knowledge was developed

27/41

CRISO¹⁵

An algorithm dedicated to sampling optimisation for 2D J-resolved MRS was developed

¹⁴Roussel T et al, ESMRMB Antalya, 119, 2009
¹⁵Roussel T et al, ISMRM-ESMRMB Stockholm, 904, 2010

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		00000000000000	00000000000	
Conclusions				

A new localised 2D MRS sequence handling irregular sampling and inversion-recovery excitation was designed

NEMESIS¹⁴

A novel complex time domain quantification procedure relying on strong prior-knowledge was developed

CRISO¹⁵

An algorithm dedicated to sampling optimisation for 2D J-resolved MRS was developed

Limitations

The CRISO method, despite promising results, has a limited interest for the reduction of 2D MRS experiment acquisition time for *in vivo* application.

¹⁴Roussel T et al, ESMRMB Antalya, 119, 2009

¹⁵Roussel T et al, ISMRM-ESMRMB Stockholm, 904, 2010

Introduction 00000	State of the art	Goals	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
					A s
	11. 2277 A.2.6.4.3	1	Ultrafast 2D MR	S	

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	0000000000	
Aims				

- 2D MRS J-resolved spectroscopy sequence
- Spatial localisation of the ultrafast signal

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	0000000000	
Aims				

- 2D MRS J-resolved spectroscopy sequence
- Spatial localisation of the ultrafast signal

Develop a post-processing procedures

- 2D MRS spectrum reconstruction from raw data
- Spectrum quality enhancement using spatial apodisation

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	0000000000	
Aims				

- 2D MRS J-resolved spectroscopy sequence
- Spatial localisation of the ultrafast signal

Develop a post-processing procedures

- 2D MRS spectrum reconstruction from raw data
- Spectrum quality enhancement using spatial apodisation

Validate the methods on in vitro phantoms

• Spatial localisation test on a dedicated GABA/Ethanol in vitro phantom

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	0000000000	
Aims				

- 2D MRS J-resolved spectroscopy sequence
- Spatial localisation of the ultrafast signal

Develop a post-processing procedures

- 2D MRS spectrum reconstruction from raw data
- Spectrum quality enhancement using spatial apodisation

Validate the methods on in vitro phantoms

 Spatial localisation test on a dedicated GABA/Ethanol in vitro phantom

This work was supported by CNRS ("SiqMu", PEPS-INSIS CNRS 2010 funding) and was carried out in close collaboration with P. Giraudeau and S. Akoka (CEISAM laboratory, Université de Nantes)

Fig. 22: Understanding ultrafast 2D J-resolved MRS

An ultrafast localised 2D J-resolved MRS experiment consists in :

- performing an ultrafast excitation that spatially encodes the chemical shift information along one spatial dimension
- performing an EPl¹⁶-based detection to collect the ultrafast spectra for numerous t₁ increments
- Fourier transforming the data set following the t_1 dimension

Fig. 23: ufJPRESS pulse sequence 3D localised 2D J-Resolved ultrafast MRS

¹⁷UltraFast J-resolved Point Resolved SpectroScopy

Fig. 23: ufJPRESS pulse sequence 3D localised 2D J-Resolved ultrafast MRS

ufJPRESS¹⁷ : dedicated sequence to *in vivo* experiment

- 7T Bruker Biospec imaging system (small animal) running with Paravision 5.1
- Signal collected with a quadrature coil (transmit/receive, 32 mm, Rapid Biomed)
- Preparation : VAPOR module + OVS module

¹⁷UltraFast J-resolved Point Resolved SpectroScopy

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
			000000000000000000000000000000000000000	
ufJPRESS seque	nce			

Ultrafast excitation scheme

Fig. 24: ufJPRESS pulse sequence 3D localised 2D J-Resolved ultrafast MRS

Ultrafast excitation scheme

- **PRESS localisation scheme** nested in a modified version of the **ultrafast** excitation scheme proposed by Pelupessy et al.¹⁸
- Original 90° and 180° PRESS slice pulses applied during G_1 and G_2 gradients perform the **spatial selection in the first two dimensions**
- Adiabatic 180° chirp pulses applied during bipolar excitation gradients $(\pm G_e)$ spatially encode the chemical shift information along the third spatial dimension

Fig. 25: ufJPRESS pulse sequence 3D localised 2D J-Resolved ultrafast MRS

Detection scheme

- EPI-based detection scheme
- **EPI bipolar gradients** are replaced by a positive acquisition gradient *G_a* followed by a 180° refocussing pulse¹⁹
- Preceded by a "shifting" gradient G_c to adjust the position of the spectral window
- Spectral resolution following the conventional dimension (F_1) depends in inverse proportion on the detection scheme duration T_d

¹⁹Giraudeau P et al, JPBA, 43 :1243-1248, 2007

Fig. 26: ufJPRESS pulse sequence 3D localised 2D J-Resolved ultrafast MRS

Phase cycles

- ϕ_1 [+x,+y] phase cycle that reduces constant undesired signals ($F_1=0$ Hz)
- ϕ_2 [+y,+y,-y,-y] phase cycle that compensates imperfections of the 180° hard pulse (spurious stimulated echoes)
- ϕ_1 phase cycle requires a minimum number of 2 accumulations

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
			000000000000	
Optimising the se	quence			
Excitation sche	me optimisation			

Method

- Highly concentrated ethanol solution (70% w/w in water)
- Signal collected from a 8 mm x 8 mm x 8 mm voxel
- Ultrafast excitation duration $T_e = 2\tau^{\pi}$ optimisation
- Chirp pulse calibration using a spin-echo based sequence

Fig. 27: CH_3 peak intensity and peak linewidths in the ultrafast dimension according to excitation duration (T_e)

Introduction	State of the art	Goals	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
				000000000000000000000000000000000000000	
Optimising the se	quence				
Excitation sche	eme optimisation				

Method

- Highly concentrated ethanol solution (70% w/w in water)
- Signal collected from a 8 mm x 8 mm x 8 mm voxel
- Ultrafast excitation duration $T_e = 2\tau^{\pi}$ optimisation
- Chirp pulse calibration using a spin-echo based sequence

Fig. 27: CH_3 peak intensity and peak linewidths in the ultrafast dimension according to excitation duration (T_e)

Results

- Signal-to-Noise (S/N) ratio strongly decreases according to T_e^{20}
- Ultrafast spectral resolution increases according to T_e
- Good compromise is reached for $T_e = 30$ ms

²⁰Giraudeau P, PhD Thesis, Université de Nantes, 2008

Introduction	State of the art	Goals	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
				000000000000000000000000000000000000000	
Optimising the se	quence				
Excitation sche	eme optimisation				

Method

- Highly concentrated ethanol solution (70% w/w in water)
- Signal collected from a 8 mm x 8 mm x 8 mm voxel
- Ultrafast excitation duration $T_e = 2\tau^{\pi}$ optimisation
- Chirp pulse calibration using a spin-echo based sequence

Fig. 27: CH_3 peak intensity and peak linewidths in the ultrafast dimension according to excitation duration (T_e)

Results

- Signal-to-Noise (S/N) ratio strongly decreases according to T_e^{20}
- Ultrafast spectral resolution increases according to T_e
- Good compromise is reached for $T_e = 30$ ms

Limitations

- Short excitation duration T_e requires high RF power for chirp pulses
- Long excitation duration T_e requires high gradient strength for G_a

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
			000000000000	
Optimising the seq	uence			

Ultrafast vs. conventional 2D J-Resolved MRS

Fig. 28: Tilted conventional (a) and ultrafast (b) localised 2D J-resolved spectra

Method

- Concentrated ethanol solution (10% w/w in water)
- Signal collected from a 8 mm × 8 mm × 8 mm voxel
- Conventional and ultrafast 2D J-resolved experiments were performed with n_1 =128 following t_1 dimension

	State of the art		Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives	
				000000000000		
Optimising the sequence						

Ultrafast vs. conventional 2D J-Resolved MRS

Fig. 28: Tilted conventional (a) and ultrafast (b) localised 2D J-resolved spectra

Method

- Concentrated ethanol solution (10% w/w in water)
- Signal collected from a 8 mm × 8 mm × 8 mm voxel
- Conventional and ultrafast 2D J-resolved experiments were performed with n_1 =128 following t_1 dimension

	Ultrafast	Conventional	
F_2 dimension	17.0 Hz	1.9 Hz	
F_1 dimension	2.3 Hz	1.3 Hz	
Scan time	20 s	21 mins	

Tab. 1: CH₃ peak linewidths and scan time comparison between ultrafast and conventional 2D J-resolved MRS experiments

Observation

The chemical shifts and the J coupling values of both spectra are in good agreement with literature data

	State of the art		Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives	
				0000000000000		
Optimising the sequence						
Veval localizat	ion					

Fig. 29: Sagittal and axial images of the γ -Aminobutyric acid (GABA) *in vitro* phantom (FLASH, TE/TR = 5.4/100 ms)

Fig. 30: 3D localised 2D ultrafast J-resolved spectrum of GABA

37/41

Method

- Purpose-built phantom for localisation tests : 1.5 mL tube containing a γ -Aminobutyric acid (GABA) solution (10% w/w in water) placed at the center of a 50 mL tube of pure ethanol
- Signal collected from a 5 mm x 5 mm x 5 mm voxel placed in the GABA solution
- 3 mm Outer Volume Saturation (OVS) bands with a 0.5 mm gap to voxel
- Number of Accumulations (NA) = 16 resulting in a 2 min 40 s scan time

	State of the art		Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives	
				0000000000000		
Optimising the sequence						
Veval localizat	ion					

Fig. 29: Sagittal and axial images of the γ -Aminobutyric acid (GABA) *in vitro* phantom (FLASH, TE/TR = 5.4/100 ms)

Fig. 30: 3D localised 2D ultrafast J-resolved spectrum of GABA

37/41

Method

- Purpose-built phantom for localisation tests : 1.5 mL tube containing a γ -Aminobutyric acid (GABA) solution (10% w/w in water) placed at the center of a 50 mL tube of pure ethanol
- Signal collected from a 5 mm x 5 mm x 5 mm voxel placed in the GABA solution
- 3 mm Outer Volume Saturation (OVS) bands with a 0.5 mm gap to voxel
- Number of Accumulations (NA) = 16 resulting in a 2 min 40 s scan time

Efficient 3D localisation

Very low intensity ethanol peaks (at 1.19 and 3.67 ppm) were reported

Data reconstruction & Post-processing procedures

Fig. 31: Raw (a) and post-processed (b) ultrafast 2D J-resolved spectra of a highly concentrated ethanol solution (70% w/w in water)

Ultrafast artefacts

- Raw ultrafast spectra present asymmetric sinc wiggles around peaks of interest
- These wiggles are inherent to ultrafast MR experiment

Ultrafast 2D MRS 0000000000000000 Conclusions & Perspectives

Data reconstruction & Post-processing procedures

Fig. 31: Raw (a) and post-processed (b) ultrafast 2D J-resolved spectra of a highly concentrated ethanol solution (70% w/w in water)

Ultrafast artefacts

- Raw ultrafast spectra present asymmetric sinc wiggles around peaks of interest
- These wiggles are inherent to ultrafast MR experiment

Automatic post-processing procedure

- Based on spatial apodization
- The optimal apodization window width is automatically estimated in order to improve S/N ratio without decreasing spectral resolution
- The "apparent" S/N ratio is usually 2.5 times higher while linewidth increases by only 2 Hz

State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
		00000000000	

Data reconstruction & Post-processing procedures

Fig. 32: Inverse Fourier transformed ultrafast signals apodised in the spatial dimension with an optimised gaussian window (a) and the corresponding CH_3 2D peak in the F_2t_1 plan where linewidth estimation is performed (b)

Ultrafast artefacts

- Raw ultrafast spectra present asymmetric sinc wiggles around peaks of interest
- These wiggles are inherent to ultrafast MR experiment²¹

Automatic post-processing procedure

- Based on spatial apodization²²
- The optimal apodization window width is automatically estimated in order to improve S/N ratio without decreasing spectral resolution
- The "apparent" S/N ratio is usually 2.5 times higher while linewidth increases by only 2 Hz

 $^{^{21}}$ Shapira B et al, JMR, 166 :152-163, 2004 22 Giraudeau P et al, MRC, 49 :307-313, 2011
00000		00010	000000000000000000000000000000000000000	000000000000	conclusions a respective
	Qu	antitative	conventional 2D MRS		
		2D J-PR	ESS WISH : a new localise	d 2D MRS seque	nce
		NEMESI	S : a novel complex time d	omain quantificat	ion procedure
		CRISO :	an algorithm for sampling	optimisation	
1 gpc	GSH Lac mins				

ions & Perspecti

 ${}^{23}\text{Tkác l et al, MRM, 41 :649-656, 1999} \\ {}^{24}\text{Roussel T et al, JMR, 215 :50-55, 2012} \\ {}^{25}\text{Roussel T et al, ISMRM Melbourne, 2012} \\ \end{array}$

Introduction 00000	State of the art	Goals	Quantitative conventional 2D MRS	00000000000000000000000000000000000000	Conclusions & Perspective
F	Qua	ntitative	conventional 2D MRS		
TE_2	•	2D J-PI	RESS WISH : a new localise	d 2D MRS seque	ence
π	•	NEMES	IS : a novel complex time d	omain quantifica	tion procedure
A Cbu	CGSH Lac rains	CRISO	an algorithm for sampling	optimisation	
Pers	nectives				

- 2D J-PRESS WISH : ultra short TE acquisition²³
- CRISO : integration of NA accumulation handling
- NEMESIS : regularisation terms

 ${}^{23}\text{Tkác l et al, MRM, 41 :649-656, 1999} \\ {}^{24}\text{Roussel T et al, JMR, 215 :50-55, 2012} \\ {}^{25}\text{Roussel T et al, ISMRM Melbourne, 2012} \\ \end{array}$

Introduction 00000	State of the art	Goals	Quantitative conventional 2D MRS	Ultrafast 2D MRS 00000000000	Conclusions & Perspectives
		2D J-PF NEMES CRISO	conventional 2D MRS RESS WISH : a new localise IS : a novel complex time d an algorithm for sampling	ed 2D MRS seque Iomain quantifica optimisation	ance tion procedure
Pers	pectives	A/ICH ·	tra chart TE acquisition ²³		
	CRISO : integ NEMESIS : re	ration of gularisatio	NA accumulation handling on terms		
	δ^{π} Ult	rafast 2D	MRS		

- ufJPRESS : First 3D localised 2D J-resolved ultrafast MRS sequence
- Feasibility stage shows good quality for *in vitro* spectra²⁴ ²⁵

 ${}^{23}\text{Tkác l et al, MRM, 41 :649-656, 1999} \\ {}^{24}\text{Roussel T et al, JMR, 215 :50-55, 2012} \\ {}^{25}\text{Roussel T et al, ISMRM Melbourne, 2012} \\ \end{array}$

 $O_f^{\pi} \to O_i^{\pi}$ spoilers

Perspectives

- Great potential as it could be combined to high SNR spectroscopy applications
- Optimised trajectory in the plan $(k/\nu_1, F_2)$ during detection
- Ultrafast spectroscopic imaging

 ${}^{23}\text{Tkác I et al, MRM, 41 :649-656, 1999} \\ {}^{24}\text{Roussel T et al, JMR, 215 :50-55, 2012} \\ {}^{25}\text{Roussel T et al, ISMRM Melbourne, 2012} \\ \end{array}$

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	00000000000	

- 1 first-author article: 3D localised 2D ultrafast J-resolved magnetic resonance spectroscopy: In vitro study on a 7T imaging system, JMR, 215:50-55, 2012
- 2 first-author oral communications in international conferences
- 4 first-author poster communications in international conferences
- 3 first-author communications in national conferences

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	00000000000	

- 1 first-author article : 3D localised 2D ultrafast J-resolved magnetic resonance spectroscopy : In vitro study on a 7T imaging system, JMR, 215 :50-55, 2012
- 2 first-author oral communications in international conferences
- 4 first-author poster communications in international conferences
- 3 first-author communications in national conferences

Scientific collaborations

- "SiqMu" project (PEPS CNRS 2010 funding) in close collaboration with P. Giraudeau and S. Akoka (CEISAM laboratory, Université de Nantes)
- Scientific collaboration with Frydman group in October 2012

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	00000000000	

- 1 first-author article : 3D localised 2D ultrafast J-resolved magnetic resonance spectroscopy : *In vitro* study on a 7T imaging system, JMR, 215 :50-55, 2012
- 2 first-author oral communications in international conferences
- 4 first-author poster communications in international conferences
- 3 first-author communications in national conferences

Scientific collaborations

- "SiqMu" project (PEPS CNRS 2010 funding) in close collaboration with P. Giraudeau and S. Akoka (CEISAM laboratory, Université de Nantes)
- Scientific collaboration with Frydman group in October 2012

MRI facilities

- 4.7 T small animal Bruker Biospec MRI : CREATIS, CPE, Villeurbanne
- 7 T small animal Bruker Biospec MRI : ANIMAGE, CERMEP, Bron
- Bruker pulse programming course, Ettlingen, Germany

	State of the art	Quantitative conventional 2D MRS	Ultrafast 2D MRS	Conclusions & Perspectives
00000		0000000000000	00000000000	

- 1 first-author article : 3D localised 2D ultrafast J-resolved magnetic resonance spectroscopy : *In vitro* study on a 7T imaging system, JMR, 215 :50-55, 2012
- 2 first-author oral communications in international conferences
- 4 first-author poster communications in international conferences
- 3 first-author communications in national conferences

Scientific collaborations

- "SiqMu" project (PEPS CNRS 2010 funding) in close collaboration with P. Giraudeau and S. Akoka (CEISAM laboratory, Université de Nantes)
- Scientific collaboration with Frydman group in October 2012

MRI facilities

- 4.7 T small animal Bruker Biospec MRI : CREATIS, CPE, Villeurbanne
- 7 T small animal Bruker Biospec MRI : ANIMAGE, CERMEP, Bron
- Bruker pulse programming course, Ettlingen, Germany

Computer calculation facilities

CREATIS computer cluster for Monte Carlo studies

